AWS Big Data Blog

Category: Amazon DynamoDB

Using Spark SQL for ETL

Ben Snively is a Solutions Architect with AWS With big data, you deal with many different formats and large volumes of data. SQL-style queries have been around for nearly four decades. Many systems support SQL-style syntax on top of the data layers, and the Hadoop/Spark ecosystem is no exception. This allows companies to try new […]

Read More

Real-time in-memory OLTP and Analytics with Apache Ignite on AWS

Babu Elumalai is a Solutions Architect with AWS Organizations are generating tremendous amounts of data, and they increasingly need tools and systems that help them use this data to make decisions. The data has both immediate value (for example, trying to understand how a new promotion is performing in real time) and historic value (trying […]

Read More

Analyze Your Data on Amazon DynamoDB with Apache Spark

Manjeet Chayel is a Solutions Architect with AWS Every day, tons of customer data is generated, such as website logs, gaming data, advertising data, and streaming videos. Many companies capture this information as it’s generated and process it in real time to understand their customers. Amazon DynamoDB is a fast and flexible NoSQL database service […]

Read More

Performance Tuning Your Titan Graph Database on AWS

At AWS re:Invent 2017, we announced the preview of Amazon Neptune, a fast and reliable graph database built for the cloud. Neptune is fully managed and highly available, and it includes read replicas, point-in-time recovery, and continuous backups to Amazon S3. If you are about to build an application yourself and need a graph database, […]

Read More

Scaling Writes on Amazon DynamoDB Tables with Global Secondary Indexes

Ian Meyers is a Solutions Architecture Senior Manager with AWS Amazon DynamoDB is a fast, flexible, and fully managed NoSQL database service that supports both document and key-value store models that need consistent, single-digit millisecond latency at any scale. In this post, we discuss a technique that can be used with DynamoDB to ensure virtually […]

Read More

Building and Maintaining an Amazon S3 Metadata Index without Servers

Mike Deck is a Solutions Architect with AWS Amazon S3 is a simple key-based object store whose scalability and low cost make it ideal for storing large datasets. Its design enables S3 to provide excellent performance for storing and retrieving objects based on a known key. Finding objects based on other attributes, however, requires doing […]

Read More

Presto-Amazon Kinesis Connector for Interactively Querying Streaming Data

This is a guest post by Sivaramakrishnan Narayanan, Member of Technical Staff at Qubole, and Xing Quan, Director of Product Management at Qubole. Qubole is an AWS Advanced Technology Partner. Amazon Kinesis is a scalable and fully managed service for streaming large, distributed data sets. As applications (particularly on mobile and wearable devices) start to […]

Read More

How Expedia Implemented Near Real-time Analysis of Interdependent Datasets

This is a guest post by Stephen Verstraete, a manager at Pariveda Solutions. Pariveda Solutions is an AWS Premier Consulting Partner. Common patterns exist for batch processing and real-time processing of Big Data. However, we haven’t seen patterns that allow us to process batches of dependent data in real-time. Expedia’s marketing group needed to analyze […]

Read More

Using AWS for Multi-instance, Multi-part Uploads

James Saull is a Principal Solutions Architect with AWS There are many advantages to using multi-part, multi-instance uploads for large files. First, the throughput is improved because you can upload parts in parallel. Amazon Simple Storage Service (Amazon S3) can store files up to 5TB, yet a single machine with a 1Gbps interface would take […]

Read More