AWS Machine Learning Blog

Category: Artificial Intelligence

Deploy a Microsoft Teams gateway for Amazon Q Business

In this post, we show you how to bring Amazon Q Business to users in Microsoft Teams. (If you use Slack, refer to Deploy a Slack gateway for Amazon Q Business) You’ll be able converse with Amazon Q Business using Teams direct messages (DMs) to ask questions and get answers based on company data, get help creating new content such as email drafts, summarize attached files, and perform tasks.

Build enterprise-ready generative AI solutions with Cohere foundation models in Amazon Bedrock and Weaviate vector database on AWS Marketplace

This post discusses how enterprises can build accurate, transparent, and secure generative AI applications while keeping full control over proprietary data. The proposed solution is a RAG pipeline using an AI-native technology stack, whose components are designed from the ground up with AI at their core, rather than having AI capabilities added as an afterthought. We demonstrate how to build an end-to-end RAG application using Cohere’s language models through Amazon Bedrock and a Weaviate vector database on AWS Marketplace.

Build a vaccination verification solution using the Queries feature in Amazon Textract

Amazon Textract is a machine learning (ML) service that enables automatic extraction of text, handwriting, and data from scanned documents, surpassing traditional optical character recognition (OCR). It can identify, understand, and extract data from tables and forms with remarkable accuracy. Presently, several companies rely on manual extraction methods or basic OCR software, which is tedious […]

Reduce inference time for BERT models using neural architecture search and SageMaker Automated Model Tuning

In this post, we demonstrate how to use neural architecture search (NAS) based structural pruning to compress a fine-tuned BERT model to improve model performance and reduce inference times. Pre-trained language models (PLMs) are undergoing rapid commercial and enterprise adoption in the areas of productivity tools, customer service, search and recommendations, business process automation, and […]

Fine-tune and deploy Llama 2 models cost-effectively in Amazon SageMaker JumpStart with AWS Inferentia and AWS Trainium

Today, we’re excited to announce the availability of Llama 2 inference and fine-tuning support on AWS Trainium and AWS Inferentia instances in Amazon SageMaker JumpStart. Using AWS Trainium and Inferentia based instances, through SageMaker, can help users lower fine-tuning costs by up to 50%, and lower deployment costs by 4.7x, while lowering per token latency. […]

Use mobility data to derive insights using Amazon SageMaker geospatial capabilities

Geospatial data is data about specific locations on the earth’s surface. It can represent a geographical area as a whole or it can represent an event associated with a geographical area. Analysis of geospatial data is sought after in a few industries. It involves understanding where the data exists from a spatial perspective and why […]

Host the Whisper Model on Amazon SageMaker: exploring inference options

OpenAI Whisper is an advanced automatic speech recognition (ASR) model with an MIT license. ASR technology finds utility in transcription services, voice assistants, and enhancing accessibility for individuals with hearing impairments. This state-of-the-art model is trained on a vast and diverse dataset of multilingual and multitask supervised data collected from the web. Its high accuracy […]

Build financial search applications using the Amazon Bedrock Cohere multilingual embedding model

Enterprises have access to massive amounts of data, much of which is difficult to discover because the data is unstructured. Conventional approaches to analyzing unstructured data use keyword or synonym matching. They don’t capture the full context of a document, making them less effective in dealing with unstructured data. In contrast, text embeddings use machine […]

Ball position tracking in the cloud with the PGA TOUR

The PGA TOUR continues to enhance the golf experience with real-time data that brings fans closer to the game. To deliver even richer experiences, they are pursuing the development of a next-generation ball position tracking system that automatically tracks the position of the ball on the green. The TOUR currently uses ShotLink powered by CDW, […]

Build an Amazon SageMaker Model Registry approval and promotion workflow with human intervention

This post is co-written with Jayadeep Pabbisetty, Sr. Specialist Data Engineering at Merck, and Prabakaran Mathaiyan, Sr. ML Engineer at Tiger Analytics. The large machine learning (ML) model development lifecycle requires a scalable model release process similar to that of software development. Model developers often work together in developing ML models and require a robust […]