Amazon Web Services ブログ

Category: Artificial Intelligence

Apache MXNet リリースに追加された新しい NVIDIA Volta GPU と Sparse Tensor のサポート

Apache MXNet バージョン 0.12 が利用可能になりました。MXNet コミュニティに参加している貢献者の方々との協力により、強化点を追加する新機能の提供を実現することができました。今回のリリースでは、MXNet に 2 つの重要な機能が追加されています。 NVIDIA Volta GPU のサポートにより、ユーザーはトレーニングやニューラルネットワークモデルの推論に掛かる時間を大幅に削減することができます。 Sparse Tensor のサポートにより、ユーザーは保存とコンピューティングを効率的にした方法で Sparse マトリックスを使用しモデルをトレーニングすることができます。 NVIDIA Volta GPU サポートのアーキテクチャ MXNet v0.12 リリースには NVIDIA Volta V100 GPU サポートが追加されています。これにより、ユーザーは畳み込みニューラルネットワークのトレーニングを Pascal GPU に比べて 3.5 倍も速くすることができます。ニューラルネットワークのトレーニングには、数兆にもなる浮動小数点 (FP) 倍数や追加が関係しています。通常、こうした計算には高精度にするため単精度浮動小数点 (FP32) が使われます。けれども、最近の研究結果によると、ユーザーがトレーニングで浮動小数点を半精度 (FP16) にしたデータタイプを使用しても、FP32 データタイプを使用したトレーニングと同じ精度を実現できることが分かっています。 Volta GPU アーキテクチャが Tensor Core を導入しました。各 Tensor Core は 1 時間ごとに 64 fuse-multiply-add […]

Read More

Amazon CloudWatch で GPU 使用率をモニタリング

GPU には何千ものコアがあるため、ディープラーニングには大量のマトリックス乗算と GPU (グラフィックス処理ユニット) により並列化できるベクトルオペレーションが必要です。アマゾン ウェブ サービスでは P2 または P3 インスタンスにサインアップすることが可能です。このようなインスタンスは、大規模なディープニューラルネットワークのデプロイの加速化を強調する MXNet のようなディープラーニングフレームワークの実行に優れています。 データサイエンティストや開発者はネットワークを微調整する場合、適切なバッチサイズを使用できるように GPU 使用率を最適化したいと考えています。今回のブログでは、Amazon CloudWatch メトリクスを使用して GPU とメモリ使用量をモニタリングする方法をご説明します。Amazon マシンイメージ (AMI) では、インスタンスが Amazon Deep Learning AMI を使用することを勧めています。 GPU を有効にしたインスタンスのモニタリングや管理をサポートするために使用されている現在の一般的な方法は、コマンドラインユーティリティの NVIDIA システム管理インターフェイスを利用することです (nvidia-smi)。nvidia-smi の使用により、ユーザーは GPU 使用率、メモリ消費量、ファンの使用量、電力消費量、そして NVIDIA GPU デバイスの温度などの情報をクエリすることができます。 nvidia-smi は NVIDIA 管理ライブラリをベースにしているので (NVML)、C ベースの API ライブラリを使用し、カスタムメトリクスとして Amazon CloudWatch に送信するのと同じデータポイントをキャプチャできます。このライブラリに関する詳細については「リファレンスマニュアル (reference manual)」をご覧ください。このブログではライブラリに Python ラッパーの pyvnml を使用します。 […]

Read More

Amazon Rekognition とグラフデータベースを使って映画スターのソーシャルネットワークを理解する

Amazon Rekognition は、イメージの分析をアプリケーションに簡単に追加できるようにする AWS サービスです。ディープラーニングを活用したこのコンピュータビジョン向け API に追加された最新機能が、有名人の認識です。この使いやすい機能は、各分野の有名人や著名人を多数検出、認識します。このツールにより、ユーザーは自身の関心に基づいて有名人のデジタルイメージライブラリのインデックスを作成し、検索することができます。 当社のお客様が個人に関するデータの保存に用いる一般的な方法の 1 つが、グラフデータベースです。過去のブログ投稿で詳しく説明したとおり、Facebook や LinkedIn、Twitter といった企業は巨大な関係性ネットワークの管理能力を通じ、社会が相互に関わり合う方法を革新してきました。このブログ投稿の目的は、Rekognition の有名人の認識および顔認識機能をグラフデータベースに保存された関係情報に組み合わせるのがいかに簡単かをご紹介することです。 これらのテクノロジーを組み合わせることで、お客様は 1 枚の写真を通じて、その写真に含まれる人物が他の関心対象である人物とどのように関連しているかを把握できます。さらに、2 枚の写真を送信し、それぞれの写真に含まれる人々の間にどのような相互関係があるかを素早く見極めることも可能です。この関係マッピングを活かしたコミカルな例が、有名な Six Degrees of Kevin Bacon (ケヴィン・ベーコンとの六次の隔たり) ゲームです。しかし、このようなアプリケーションのビジネス価値は実に大きなものです。法執行機関は 2 枚の写真を基に Rekognition を活用して各人物の身元を特定し、グラフデータベースを参照して関心対象である 2 名の人物が知り合いかどうかを突き止めることができます。同様に、ホスピタリティ企業は Rekognition とグラフデータベースを使って敷地内にいる有名人を素早く特定し、その人物の知り合いである他の有名人のうち、近隣に宿泊している人物を把握できます。 このブログ投稿では、グラフデータベース (ここでは Neo4j Community Edition を使用) を採用した Rekognition と、D3.js ライブラリを使用した Jupyter Notebook の併用方法のデモンストレーションをご紹介します。 設定 このテクノロジーの組み合わせの使用を開始するには、まず AWS ラボの Github リポジトリからプロジェクトのコピーを取得します。  プロジェクト構成には 2 つの主なエリアが含まれます。 <project […]

Read More

柔軟性の高いディープラーニングのために簡単に使用できるプログラミングインターフェイス Gluon のご紹介

本日は、AWS と Microsoft が、どのディープラーニングフレームワークを選択するかにかかわらず、すべての開発者向けに機械学習テクノロジーの速度、柔軟性、アクセス性を向上させることを主眼とした新しい仕様を発表しました。この連携による最初の結果が、新しい Gluon インターフェイスです。これはあらゆるスキルレベルの開発者がディープラーニングモデルのプロトタイプ作成、構築、トレーニングを行えるようにする、Apache MXNet のオープンソースライブラリです。このインターフェイスにより、トレーニング速度を犠牲にすることなく、ディープラーニングモデルの作成プロセスを大幅に簡略化できます。 Gluon の 4 つの重要な利点と、それを示すサンプルコードを示します。 (1) シンプルで理解しやすいコード Gluon では、シンプル、明瞭、簡潔なコードを使ってニュートラルネットワークを定義できます。事前定義されたレイヤー、オプティマイザ、イニシャライザを含む、プラグアンドプレイのニュートラルネットワーク構築要素のフルセットを入手できます。これにより、基盤となる複雑な実装詳細の多くが排除されます。次の例では、わずか数行のコードでシンプルなニュートラルネットワークを定義する方法を示しています。 # 最初のステップはモデルの初期化です net = gluon.nn.Sequential() # Then, define your model architecture with net.name_scope(): net.add(gluon.nn.Dense(128, activation=”relu”)) # 最初のレイヤー – 128 ノード net.add(gluon.nn.Dense(64, activation=”relu”)) # 2 番目のレイヤー – 64 ノード net.add(gluon.nn.Dense(num_outputs)) # Output layer 次の図に、ニュートラルネットワークの構造を示します。 詳細については、こちらのウォークスルーに移動して、Gluon ニュートラルネットワーク構成要素を使って multilayer perceptron (MLP) と呼ばれるシンプルなニュートラルネットワークを作成する方法を参照してください。より高度なユースケース向けに、ニュートラルネットワークのパーツをゼロから作成することも簡単です。Gluon […]

Read More

Using Amazon Polly to Provide Real-Time Home Monitoring Alerts

このブログは、Y-cam Solutions のシニア開発者である Siva K. Syamala によるゲストブログポストです。Syamala 女史の言葉によると、「Y-cam は高性能なセキュリティビデオソリューションのプロバイダとして、すべての人々に簡単で扱いやすいスマートホームセキュリティを提供してくことをビジョンに掲げています」。 ホームセキュリティは、ホームオートメーションと IoT の活用においてとても重要な要素です。Y-cam Solutions Limited は Amazon をその基盤援助として、世界各地からスマートフォンによるモニタリングと制御ができるスマートセキュリティシステムを提供してきました。アラート、通知、そしてシステムをコントロールする方法を改善するために、Y-cam は Amazon Polly を使用して、ユーザーが会話によってセキュリティシステムと交信できる最新型の AI サービスを提供します。 当社サービスの作動方法 アラームが発生すると、Twilio を通じて音声によるカスタマーへの通知が行われます。呼び出しが確立されたら、Twilio は TwiML の指示に従って手順を実行し、Amazon Polly から取得する音声構成を使用してカスタマーにストリーミングを開始します。呼び出しの受信者は、携帯電話のキーパッド (DTMF コード) のボタンを押して回答します。DTMF コードによって、当社のサービスは指定されたアクションを実行し、Amazon Polly から取得する音声合成への TwiML 指示を返します。実際により近い会話を実現するには、Amazon Polly が素早く返答することがとても重要となります。遅延と待機時間は不満を引き起こし、受信者が電話を終了してしまう可能性を増大させます。 以下は、アラームが発生した場合のカスタマーへの通話を示すオーディオクリップのサンプルです。 アーキテクチャ   Amazon Polly の呼び出し 次の Java コードは、Amazon Polly から音声合成がリクエストされ、S3 バケットに保存されることを示しています。

Read More

利用可能になりました – Amazon Linux AMI 2017.09

Amazon Linux AMI の最新バージョン (2017.09) が、すべての AWS リージョンの現行世代の EC2 インスタンスで利用可能になったことをお知らせします。AMI には、EC2 上で実行するアプリケーションのために安定した安全で高性能な環境を提供するように設計された Linux イメージのサポートと保持が含まれています。 簡単なアップグレード 次の 2 つのコマンドを実行して既存のインスタンスをアップグレードし、再起動します。 $ sudo yum clean all $ sudo yum update 盛りだくさん AMI には多くの新機能が含まれており、そのうち多くはお客様のリクエストに応えて追加されたものです。概要は次をご覧ください。 Kernel 4.9.51 – Based on the 4.9 の安定したカーネルシリーズをベースにしたこのカーネルには、ENA 1.3.0 ドライバーと TCP Bottleneck Bandwidth and RTT (BBR) のサポートが含まれています。私の投稿 Elastic Network Adapter – High-Performance Network Interface for […]

Read More

Amazon Lex と Amazon Alexa を使用した質疑応答ボットの作成

ユーザーの質問に対する回答を持っていますが、ユーザーが質問をして適切な回答を得る良い方法が必要です。多くの場合、ユーザーはヘルプデスクに電話するか、サポートフォーラムに投稿しますが、ストレスが高まり、組織にとってコストがかかります。チャットボットがあれば、顧客にとって便利でしょう。興味深いことに、最近の調査は、ユーザーの 44% が人間と話すよりもチャットボットと話すことを望んでいます。 この投稿では、QnABot (「キューアンドエーボット」と発音) と呼ばれるサンプルソリューションについて説明します。 QnABot は、Amazon Lex と Amazon Alexa を使用して、「質疑応答」のための便利なインターフェイスを提供します。これにより、ユーザーは質問をして関連する回答をすばやく得ることができるようになります。 Amazon Lex を使用すると、音声とテキストチャットアクセスの両方を既存のアプリケーションに統合できます。Amazon Alexa を使用すると、Amazon Echo または Alexa Voice Service 対応デバイスを自宅や職場で使用しているユーザーに、ハンズフリー音声インターフェイスを提供できます。QnABot は両方の長所を最大限に活用しています。 QnABot は、Amazon Elasticsearch Service (Amazon ES) を使用して質問と回答を検索可能にします。ユーザーが質問をすると、Amazon ES の強力な全文検索エンジンが背後で使用され、その質問に最も合った回答が検索されます。 以下のセクションでは、次のことを行う方法について説明します。 QnABot を AWS アカウントにデプロイする。このブログでは、お客様が既に AWS を利用していることを前提としています。アカウントをまだ作成していない場合は、AWS ホームページの [Create an AWS Account] を選択してください。 コンテンツデザイナー UI を使用して、質問と回答を QnABot に挿入する。 ウェブクライアント UI で音声またはチャットを使用して質問をする。 […]

Read More

Build a Voice Kit with Amazon Lex and a Raspberry Pi

この記事では、広範に利用可能なコンポーネントを利用して、Amazon Lex をどのようにカスタムハードウェアに組み込むかを紹介します。シンプルな音声ベースの AI キットを構築して、Amazon Lex に接続する方法を示します。Raspberry Pi および合計 60 ドル以下の市販のコンポーネントをいくつか使用します。このブログの終わりまでに、Amazon Lex PostContent API に統合された、インターネット接続されたハードウェアデバイスが使用できるようになります。音声制御ロボットおよび音声制御メトロノームなどの、幾つかのボットのデモも行います。 コンポーネント概要 Amazon Lex ハードウェアキットを構築するには、以下のコンポーネントが必要です。 Raspberry PI 3 Model B、Amazon で 35 ドルから。 Kinobo – USB 2.0 ミニマイク、Amazon で 5 ドルから。 Adafruit I2S 3W ステレオスピーカーボンネットおよびスピーカー、adafruit で 12 ドルから。 (オプション) Qunqi クリアーケースボックスエンクロージャー、Amazon で 20 ドルから。 物理的な作成 Raspberry Pi 図 1. Raspberry PI […]

Read More

Amazon Connect と Amazon Lex のインテグレーション

私のお気に入りのサービス、Amazon Connect と Amazon Lex に機能強化が施されました。セルフサービスの Amazon Connect はクラウドベースのサポートセンターで、ビジネスがより良いカスタマーサービスを低コストで簡単に提供できるようにしています。Amazon Lex は、音声とテキストを使用して会話型インターフェイスを構築するためのサービスです。この 2 つのサービスを統合することで、Lex の自動音声認識 (ASR) と自然言語理解 (NLU) の性能を利用し、優れたセルフサービスエクスペリエンスを顧客に提供することができます。この統合を有効にするため、Lex チームが 8kHz の音声入力サポートを追加しました。これについては後ほど詳しくご説明します。この機能のメリットは?顧客によるリクエストの大半をボットが解決できれば、電話での待ち時間を削減し、ユーザーは時間を無駄にすることなく製品を使用することができます。 Connect または Amazon Lex の背景情報については、Jeff が過去に公開したブログ [1][2] をぜひお読みください。LEGO ファンの方は特にお楽しみいただけると思います。 では、この新しい統合の使用方法を見ていきましょう。Twitch チャンネルで構築したアプリケーションを使用して、このブログ用に内容を変更します。アプリケーションのコアでユーザーが Amazon Connect の番号を呼び出します。この番号はユーザーを Lex ボットに繋げ、AWS Lambda 関数を開始します。これは Lex のインテントをベースにしています。アプリケーションでできることは? 最良のコードエディタは何だと思いますか? 個人的には vim が好きです。コード編集を行うには最高のエディタです。私の同僚の Jeff は emacs を選んでいます。 これは素晴らしいオペレーティングシステム エディタです。もし、生まれつき指の関節が普通以上にあればの話しですが。そして同僚の Tara が選んだのは Visual Studio […]

Read More

Amazon Rekognition の更新 – 有名人の認識

re:Invent で をリリースし (「Amazon Rekognition – ディープラーニングがサポートする画像の検出と認識 (Amazon Rekognition – Image Detection and Recognition Powered by Deep Learning))、本年初頭にイメージモデレーションを追加しました。本日は、有名人の認識を追加します。Rekognition のトレーニングにより、政治、スポーツ、芸能、ビジネス、メディアなどの分野の有名人や著名人を多数識別できるようになりました。このリストはグローバルで、頻繁に更新されます。この機能にアクセスするには、新しい RecognizeCelebrities関数を呼び出します。既存の DetectFaces 関数によって返される境界ボックスおよび顔ランドマーク機能に加えて、新しい関数では認識される有名人に関する情報が返されます。 “Id”: “3Ir0du6”, “MatchConfidence”: 97, “Name”: “Jeff Bezos”, “Urls”: [ “www.imdb.com/name/nm1757263” ] Urls は、有名人に関する追加情報を提供します。現在、この API は IMDB コンテンツへのリンクを返します。今後は他のソースを追加する可能性があります。この機能をお試しになるには、 で有名人の認識デモをお使いください。 イメージアーカイブを持っている場合は、有名人別にインデックスを作成できます。有名人の認識とオブジェクトの検出を組み合わせて使用して、あらゆる種類の検索ツールを構築することもできます。イメージが S3 にすでに保存されている場合は、そこで処理できます。この新機能には、いろいろな面白い使い方があるかと思います。ご意見ご感想をお寄せいただき、皆様がどのようなものをビルドしたかお知らせください。

Read More