AWS Big Data Blog

Tag: Data Lake

Exploring the public AWS COVID-19 data lake

This post walks you through accessing the AWS COVID-19 data lake through the AWS Glue Data Catalog via Amazon SageMaker or Jupyter and using the open-source AWS Data Wrangler library. AWS Data Wrangler is an open-source Python package that extends the power of Pandas library to AWS and connects DataFrames and AWS data-related services (such as Amazon Redshift, Amazon S3, AWS Glue, Amazon Athena, and Amazon EMR). For more information about what you can build by using this data lake, see the associated public Jupyter notebook on GitHub.

A public data lake for analysis of COVID-19 data

As the COVID-19 pandemic continues to threaten and take lives around the world, we must work together across organizations and scientific disciplines to fight this disease. Innumerable healthcare workers, medical researchers, scientists, and public health officials are already on the front lines caring for patients, searching for therapies, educating the public, and helping to set […]

How Siemens built a fully managed scheduling mechanism for updates on Amazon S3 data lakes

Siemens is a global technology leader with more than 370,000 employees and 170 years of experience. To protect Siemens from cybercrime, the Siemens Cyber Defense Center (CDC) continuously monitors Siemens’ networks and assets. To handle the resulting enormous data load, the CDC built a next-generation threat detection and analysis platform called ARGOS. ARGOS is a […]

ETL and ELT design patterns for modern data architecture using Amazon Redshift: Part 2

New: Read Amazon Redshift continues its price-performance leadership to learn what analytic workload trends we’re seeing from Amazon Redshift customers, new capabilities we have launched to improve Redshift’s price-performance, and the results from the latest benchmarks. Part 1 of this multi-post series, ETL and ELT design patterns for modern data architecture using Amazon Redshift: Part 1, […]

ETL and ELT design patterns for lake house architecture using Amazon Redshift: Part 1

New: Read Amazon Redshift continues its price-performance leadership to learn what analytic workload trends we’re seeing from Amazon Redshift customers, new capabilities we have launched to improve Redshift’s price-performance, and the results from the latest benchmarks. Part 1 of this multi-post series discusses design best practices for building scalable ETL (extract, transform, load) and ELT (extract, […]

Matching patient records with the AWS Lake Formation FindMatches transform

Patient matching is a major obstacle in achieving healthcare interoperability. Mismatched patient records and inability to retrieve patient history can cause significant barriers to informed clinical decision-making and result in missed diagnoses or delayed treatments. Additionally, healthcare providers often invest in patient data deduplication, especially when the number of patient records is growing rapidly in […]

Provisioning the Intuit Data Lake with Amazon EMR, Amazon SageMaker, and AWS Service Catalog

This post outlines the approach taken by Intuit, though it is important to remember that there are many ways to build a data lake (for example, AWS Lake Formation). We’ll cover the technologies and processes involved in creating the Intuit Data Lake at a high level, including the overall structure and the automation used in provisioning accounts and resources. Watch this space in the future for more detailed blog posts on specific aspects of the system, from the other teams and engineers who worked together to build the Intuit Data Lake.

Access and manage data from multiple accounts from a central AWS Lake Formation account

his post shows how to access and manage data in multiple accounts from a central AWS Lake Formation account. The walkthrough demonstrates a centralized catalog residing in the master Lake Formation account, with data residing in the different accounts. The post shows how to grant access permissions from the Lake Formation service to read, write and update the catalog and access data in different accounts.

Getting started with AWS Lake Formation

AWS Lake Formation enables you to set up a secure data lake. A data lake is a centralized, curated, and secured repository storing all your structured and unstructured data, at any scale. You can store your data as-is, without having first to structure it. And you can run different types of analytics to better guide […]