AWS Machine Learning Blog

Category: Learning Levels

Implement smart document search index with Amazon Textract and Amazon OpenSearch

In this post, we’ll take you on a journey to rapidly build and deploy a document search indexing solution that helps your organization to better harness and extract insights from documents. Whether you’re in Human Resources looking for specific clauses in employee contracts, or a financial analyst sifting through a mountain of invoices to extract payment data, this solution is tailored to empower you to access the information you need with unprecedented speed and accuracy.

Semantic image search for articles using Amazon Rekognition, Amazon SageMaker foundation models, and Amazon OpenSearch Service

Digital publishers are continuously looking for ways to streamline and automate their media workflows in order to generate and publish new content as rapidly as they can. Publishers can have repositories containing millions of images and in order to save money, they need to be able to reuse these images across articles. Finding the image that best matches an article in repositories of this scale can be a time-consuming, repetitive, manual task that can be automated. It also relies on the images in the repository being tagged correctly, which can also be automated (for a customer success story, refer to Aller Media Finds Success with KeyCore and AWS). In this post, we demonstrate how to use Amazon Rekognition, Amazon SageMaker JumpStart, and Amazon OpenSearch Service to solve this business problem.

Best practices and design patterns for building machine learning workflows with Amazon SageMaker Pipelines

In this post, we provide some best practices to maximize the value of SageMaker Pipelines and make the development experience seamless. We also discuss some common design scenarios and patterns when building SageMaker Pipelines and provide examples for addressing them.

Build a secure enterprise application with Generative AI and RAG using Amazon SageMaker JumpStart

In this post, we build a secure enterprise application using AWS Amplify that invokes an Amazon SageMaker JumpStart foundation model, Amazon SageMaker endpoints, and Amazon OpenSearch Service to explain how to create text-to-text or text-to-image and Retrieval Augmented Generation (RAG). You can use this post as a reference to build secure enterprise applications in the Generative AI domain using AWS services.

Intelligently search Adobe Experience Manager content using Amazon Kendra

This post shows you how to configure the Amazon Kendra AEM connector to index your content and search your AEM assets and pages. The connector also ingests the access control list (ACL) information for each document. The ACL information is used to show search results filtered by what a user has access to.

Optimize deployment cost of Amazon SageMaker JumpStart foundation models with Amazon SageMaker asynchronous endpoints

In this post, we target these situations and solve the problem of risking high costs by deploying large foundation models to Amazon SageMaker asynchronous endpoints from Amazon SageMaker JumpStart. This can help cut costs of the architecture, allowing the endpoint to run only when requests are in the queue and for a short time-to-live, while scaling down to zero when no requests are waiting to be serviced. This sounds great for a lot of use cases; however, an endpoint that has scaled down to zero will introduce a cold start time before being able to serve inferences.

Elevating the generative AI experience: Introducing streaming support in Amazon SageMaker hosting

We’re excited to announce the availability of response streaming through Amazon SageMaker real-time inference. Now you can continuously stream inference responses back to the client when using SageMaker real-time inference to help you build interactive experiences for generative AI applications such as chatbots, virtual assistants, and music generators. With this new feature, you can start streaming the responses immediately when they’re available instead of waiting for the entire response to be generated. This lowers the time-to-first-byte for your generative AI applications. In this post, we’ll show how to build a streaming web application using SageMaker real-time endpoints with the new response streaming feature for an interactive chat use case. We use Streamlit for the sample demo application UI.

Use Amazon SageMaker Model Cards sharing to improve model governance

One of the tools available as part of the ML governance is Amazon SageMaker Model Cards, which has the capability to create a single source of truth for model information by centralizing and standardizing documentation throughout the model lifecycle.

SageMaker model cards enable you to standardize how models are documented, thereby achieving visibility into the lifecycle of a model, from designing, building, training, and evaluation. Model cards are intended to be a single source of truth for business and technical metadata about the model that can reliably be used for auditing and documentation purposes. They provide a fact sheet of the model that is important for model governance.