AWS Machine Learning Blog
Category: Amazon Simple Storage Service (S3)
Announcing Amazon S3 access point support for Amazon SageMaker Data Wrangler
In this post, we walk you through importing data from, and exporting data to, an S3 access point in SageMaker Data Wrangler.
Unlock insights from your Amazon S3 data with intelligent search
Amazon Kendra is an intelligent search service powered by machine learning (ML). Amazon Kendra reimagines enterprise search for your websites and applications so your employees and customers can easily find the content they’re looking for, even when it’s scattered across multiple locations and content repositories within your organization. Keywords or natural language questions can be […]
Transform, analyze, and discover insights from unstructured healthcare data using Amazon HealthLake
Healthcare data is complex and siloed, and exists in various formats. An estimated 80% of data within organizations is considered to be unstructured or “dark” data that is locked inside text, emails, PDFs, and scanned documents. This data is difficult to interpret or analyze programmatically and limits how organizations can derive insights from it and […]
How Sportradar used the Deep Java Library to build production-scale ML platforms for increased performance and efficiency
This is a guest post co-written with Fred Wu from Sportradar. Sportradar is the world’s leading sports technology company, at the intersection between sports, media, and betting. More than 1,700 sports federations, media outlets, betting operators, and consumer platforms across 120 countries rely on Sportradar knowhow and technology to boost their business. Sportradar uses data […]
How RallyPoint and AWS are personalizing job recommendations to help military veterans and service providers transition back into civilian life using Amazon Personalize
This post was co-written with Dave Gowel, CEO of RallyPoint. In his own words, “RallyPoint is an online social and professional network for veterans, service members, family members, caregivers, and other civilian supporters of the US armed forces. With two million members on the platform, the company provides a comfortable place for this deserving population […]
Translate multiple source language documents to multiple target languages using Amazon Translate
Enterprises need to translate business-critical content such as marketing materials, instruction manuals, and product catalogs across multiple languages to communicate with a global audience of customers, partners, and stakeholders. Identifying the source language in each document before calling a translate job creates complexities and adds another step to your workflow. For example, an international product […]
Configure a custom Amazon S3 query output location and data retention policy for Amazon Athena data sources in Amazon SageMaker Data Wrangler
Amazon SageMaker Data Wrangler reduces the time that it takes to aggregate and prepare data for machine learning (ML) from weeks to minutes in Amazon SageMaker Studio, the first fully integrated development environment (IDE) for ML. With Data Wrangler, you can simplify the process of data preparation and feature engineering, and complete each step of […]
Use RStudio on Amazon SageMaker to create regulatory submissions for the life sciences industry
Pharmaceutical companies seeking approval from regulatory agencies such as the US Food & Drug Administration (FDA) or Japanese Pharmaceuticals and Medical Devices Agency (PMDA) to sell their drugs on the market must submit evidence to prove that their drug is safe and effective for its intended use. A team of physicians, statisticians, chemists, pharmacologists, and […]
Cloud-based medical imaging reconstruction using deep neural networks
Medical imaging techniques like computed tomography (CT), magnetic resonance imaging (MRI), medical x-ray imaging, ultrasound imaging, and others are commonly used by doctors for various reasons. Some examples include detecting changes in the appearance of organs, tissues, and vessels, and detecting abnormalities such as tumors and various other type of pathologies. Before doctors can use […]
Machine learning inference at scale using AWS serverless
With the growing adoption of Machine Learning (ML) across industries, there is an increasing demand for faster and easier ways to run ML inference at scale. ML use cases, such as manufacturing defect detection, demand forecasting, fraud surveillance, and many others, involve tens or thousands of datasets, including images, videos, files, documents, and other artifacts. […]