Amazon Web Services ブログ

re:Invent 2018 Midnight Madness/ AWS Transfer for SFTP

みなさん、こんにちは。アマゾン ウェブ サービス ジャパン、プロダクトマーケティング エバンジェリストの亀田です。 re:Invent 2018 ミッドナイトマッドネス中に、AWS Transfer for SFTPという新サービスサイレントアナウンスで発表されました。 AWS Transfer for SFTP AWS Transfer for SFTPは、Secure Shell(SSH)ファイル転送プロトコルとも呼ばれるSFTP(Secure File Transfer Protocol)を使用して、Amazon S3の内外にファイルを直接転送できるマネージドサービスになります。既存の認証システムと統合し、Amazon Route 53でDNSルーティングを提供することにより、ファイル転送ワークフローをSFTPのためのAWS転送にシームレスに移行できるようにします。SFTP用サーバの管理は不要になります。SFTPエンドポイントは、1日24時間、年中無休、年中無休で利用できるように設計されています。AWSリージョン内の複数のアベイラビリティゾーンにわたって完全な冗長性を実現し、AWS SFTPは、Microsoft Active DirectoryやLightweight Directory Access Protocol(LDAP)などの一般的なユーザ認証システムをサポートしています。 SFTPとS3がシームレスに連携することにより、サードパーティを含めたデータ共有の運用がよい簡単になります。 料金はこちらにまとまっています。 チュートリアルを兼ねたステップバイステップガイドが用意されています。 速報をお届けしましたが、日本語ブログが出たらまたご案内したいと思います。 東京リージョン他、N.Virginia、Ohio、Oregon、N.California、Canada、Ireland、Paris、Frankfurt、London、Singapore、Sydney、Seoulでご利用いただくことができます。 – プロダクトマーケティング エバンジェリスト 亀田

Read More

AWS RoboMaker-インテリジェントなロボットアプリケーションの開発、テスト、デプロイと管理

私は何十年もの間ロボットをつくりたいと思っていましたが、今、私にはチャンスができました!私にとって、常時接続で相互に影響する部品の数が非常に多いということが課題でした。複雑なハードウェア、ソフトウェア、センサー、通信システム、および「ロボットの脳」は、ロボットが必要に応じて機能するために、すべて一緒に機能する必要があります。 これから、AWS RoboMakerについてお話しようと思います。この新しいサービスは、あなたの夢であるロボットの開発、シミュレート、テスト、およびデプロイの手助けをするサービスになります。クラウドベースの開発環境でコードを開発し、Gazeboシミュレーションでテストし、完成したコードを1つまたは複数のロボットの群に展開することができます。 コードをデプロイしたら、いくつかのクリックで、アップデートやバグ修正をあなたのフリートに適用することができます。 あなたのコードは、Amazon Lex、Polly、Amazon Rekognition、Amazon Kinesis Video Streams、Amazon CloudWatchなどのAWSサービスを利用して、洗練されたロボットの脳を構築し、ROS(Robotic Operating System)のパッケージとしてアクセスできます。 また、Amazon SageMakerモデルを構築してトレーニングして、ロボットの脳内で機械学習を利用することもできます。 RoboMakerは、さまざまな物理環境(ホームワークショップ、工場フロア、教室、レストラン、ホテル、または別の惑星)、さまざまな形状とサイズのロボットで動作するように設計されています。 それでは見てみましょう

Read More

re:Invent 2018 Midnight Madness/ AWS DataSync

みなさん、こんにちは。アマゾン ウェブ サービス ジャパン、プロダクトマーケティング エバンジェリストの亀田です。 re:Invent 2018 ミッドナイトマッドネス中にAWS DataSyncという新サービスがサイレントアナウンスにて発表されました。 AWS DataSync AWS DataSyncをご利用いただくことで、AWSとの間のデータ転送が最大10倍となります。オンプレミスストレージとAmazon S3またはAmazon Elastic File System(Amazon EFS)間のデータの移動を自動化するためのデータ転送サービスです。DataSyncは、独自のインスタンスの実行、暗号化の処理、スクリプトの管理、ネットワークの最適化、データ整合性の検証など、移行を遅らせる原因になることや、IT運用に負担をかけるデータ転送に関連する多くのタスクを自動的に処理します。オンプレミスのソフトウェアエージェントを使用して、ネットワークファイルシステム(NFS)プロトコルを使用して既存のストレージまたはファイルシステムに接続するため、アプリケーションの変更が不要となります。 DataSyncエージェントを構内に配置し、ファイルシステムまたはストレージアレイに接続し、Amazon EFSまたはS3をAWSストレージとして選択し、データの移動を開始します料金はコピーしたデータに対してのみ発生します。 データセンターの移行、ハイブリッドワークロードにおけるデータ共有、DRを目的としたデータ保護など多くのユースケースでご利用いただけます。 すべてのデータは、トランスポートレイヤセキュリティ(TLS)で暗号化され、保存されたデータはAWS Key Management Service(AWS KMS)と統合されているため、AWSで安全にデータを暗号化できます。データが正常に到着することを保証し、転送ごとに、転送中と処理完了の両方で整合性チェックを実行します。これらのチェックでは、宛先に書き込まれたデータがソースから読み取られたデータと一致し、一貫性が確認されます。 こちらにチュートリアルとしてステップバイステップガイドがあります。 サービスリリース時点から東京リージョンに対応し、こちらに料金及びその他対応リージョンがまとまっています。 速報をお届けしましたが、日本語ブログが出たらまたご案内したいと思います。 – プロダクトマーケティング エバンジェリスト 亀田

Read More

re:Invent 2018 Midnight Madness/ AWS RoboMaker

みなさん、こんにちは。アマゾン ウェブ サービス ジャパン、プロダクトマーケティング エバンジェリストの亀田です。 re:Invent 2018 ミッドナイトマッドネスでAWS RoboMakerという新サービスが発表されました。 AWS RoboMaker https://aws.amazon.com/robomaker/ インテリジェントロボットアプリケーションの開発、テスト、および展開を容易にするサービスです。RoboMakerは、最も広く使用されているオープンソースのロボティクスソフトウェアフレームワークであるRobot Operating System(ROS)をクラウドサービスへの接続性で拡張します。これには、ロボットがデータをストリーミングし、ナビゲートし、コミュニケーションし、理解し、学ぶことを可能にするAWSの機械学習サービス、監視サービス、および分析サービスが含まれます。RoboMakerは、アプリケーション開発のためのロボティクス開発環境、アプリケーションテストを加速するロボティクスシミュレーションサービス、およびリモートアプリケーションの展開、更新、および管理のためのサービスを提供します。 AWS RoboMakerは、インテリジェントロボットアプリケーションの開発、テスト、および展開のための4つのコア機能を提供します。 ROS用クラウド拡張 Robot Operating System(ROS)は、ロボットアプリケーションの構築に役立つソフトウェアライブラリを提供する、最も広く使用されているオープンソースのロボットソフトウェアフレームワークです。AWS RoboMakerは、ROSのクラウド拡張機能を提供しているため、インテリジェントなロボティクスアプリケーションに必要な、よりリソース集約型のコンピューティングプロセスをクラウドにオフロードし、ローカルのコンピューティングリソースを解放することができます。これらの拡張機能により、ビデオストリーミング用のAmazon Kinesis Video Streams、画像およびビデオ分析用のAmazon Referencing、音声認識用のAmazon Lex、音声生成用のAmazon Polly、ロギングおよび監視用のAmazon CloudWatchなどのAWSサービスとの統合が容易になります。RoboMakerはこれらのクラウドサービス拡張をオープンソースのROSパッケージとして提供しているため、クラウドAPIを活用してロボットに機能を構築することができます。 開発環境 AWS RoboMakerは、ロボットアプリケーションの構築と編集を行うためのロボット開発環境を提供します。RoboMaker開発環境はAWS Cloud9をベースにしているため、ロボティクスアプリケーションコードを編集、実行、デバッグするための専用ワークスペースを起動できます。RoboMakerの開発環境には、オペレーティングシステム、開発ソフトウェア、ROSが自動的にダウンロード、コンパイル、設定されます。さらに、RoboMakerクラウドエクステンションとサンプルロボティクスアプリケーションは環境にあらかじめ統合されているため、数分で起動することができます。 シミュレーション シミュレーションは、ロボットアプリケーションが複雑な環境や変化する環境でどのように動作するかを理解するために使用されるため、高価なハードウェアに投資したり、物理的なテスト環境を設定する必要はありません。代わりに、物理的なハードウェアに展開する前に、ロボットアプリケーションのテストや微調整にシミュレーションを使用できます。AWS RoboMakerは、大規模および並列シミュレーションをサポートし、シミュレーションの複雑さに基づいて基盤となるインフラストラクチャを自動的に拡張する、完全に管理されたロボティクスシミュレーションサービスを提供します。RoboMakerは、屋内の部屋、小売店、レーストラックなどの事前構築された仮想3Dワールドを提供しているため、シミュレーションでこれらのワールドをダウンロード、変更、使用することができ、迅速かつ簡単に始めることができます。 フリート管理 アプリケーションが開発または変更されたら、アプリケーションをロボットに安全に展開し、後でロボットが使用されている間にアプリケーションを更新するOTA(Over-The-Air)システムを構築します。AWS RoboMakerは、ロボットレジストリ、セキュリティ、フォールトトレランス機能を備えた車両管理サービスを提供しています。これにより、ロボットのライフサイクル全体にわたって、OTAアップデートを展開し、ロボットアプリケーションを管理することができます。RoboMakerのフリート管理を使用して、ロボットをグループ化し、それに応じてバグ修正や新機能を更新することができます。 また日本語ブログでAWS RoboMakerの記事が出たら詳細をお知らせしたいと思います。 ROSのAWS RoboMakerクラウド拡張は、Apache Software License 2.0にて無料で提供されます。ROSアプリケーションがこれらのクラウド拡張を介してAWSサービスを利用する場合にのみ、標準のAWSサービス料金が発生します。 GitHubにサンプルアプリケーションがありますので合わせてご参考ください。 https://github.com/aws-robotics/aws-robomaker-sample-application-helloworld https://github.com/aws-robotics/aws-robomaker-sample-application-persondetection https://github.com/aws-robotics/aws-robomaker-sample-application-voiceinteraction https://github.com/aws-robotics/aws-robomaker-sample-application-cloudwatch Amazon RoboMaker はUS East […]

Read More

re:Invent 2018 AWS CloudFormation セッションガイド

re:Invent2018 開幕まであとわずかになりました。例年のように、 AWS CloudFormation が提供するインフラストラクチャデプロイの舞台裏やフロントエンドを語り尽くす、ブレークアウトセッション、ワークショップ、チョークトーク(ホワイトボードによる講義)などが予定されています。 ここではセッションカタログからいくつかのハイライトをピックアップし、続いてCloudFormationにフォーカスしたセッションやワークショップの一覧を示します。 re:Invent 2018 参加者の方はもちろん、会場にお越しでない方もイベント後の情報収集のためにご利用ください。

Read More

re:Invent 2018に向けて 2018年11月後半アップデートのまとめ 第三弾

みなさん、こんにちは。アマゾン ウェブ サービス ジャパン、プロダクトマーケティング エバンジェリストの亀田です。ラスベガスではいよいよre:Invent 2018の開催に向けて準備が本格化してきております。日本からいらっしゃる皆さんも今日到着される方が多いようです。お待ちしております。 それでは、第一弾、第二弾に続き、アップデートのまとめをお届けいたします。 AWS Resource Access Manager が発表されました。 AWS アカウント間でのリソース共有を容易にします。リソースは、組織、組織単位 (OU)、AWS アカウントで共有することができます。また、組織外のアカウントを特定のリソース共有に追加できるかどうかをコントロールすることもできます。日本語ブログをご参照ください。 Amazon Rekognition が、顔の検出、分析、認識機能の更新を発表 これらの更新により、画像からより多くの顔を検出し、より正確な顔のマッチングを実行し、画像内の顔から年齢、性別、感情の属性を取得する能力が向上します。最新の更新により、以前は見逃されていた顔の 40% を検出できるようになりました。同時に、誤検出の割合は 50% 削減されています。こちらの日本語ブログに新たに検知が可能となった画像のサンプルが掲載されています。 AWS Application AutoScaling がAmazon Kinesis Data Streams のスケーリングに対応しました。 シャードを自動的に追加・削除するスケーリングポリシーを定義できるようになりました。 Amazon CloudWatch メトリクスに基づいて Amazon Kinesis Data Streams に Auto Scaling ソリューションをデプロイすることができます。こちらの日本語ブログに、環境を自動的に設定する AWS CloudFormation テンプレートと、Lambda 関数に関連するコードも記載されています。 AWS Database Migration Service が Amazon Elasticsearch Service を移行ターゲットとしてサポートしました。 AWS DMSはデータ移行の自動化を実行を可能とし、サポートされているソースからAmazon ESターゲットへのデータの連続複製の実行が可能です。これらのソースには、関連データベース(OracleやAmazon Aurora等)、NoSQLデータベース(MongoDB)、またはAmazon […]

Read More

re:Invent 2018に向けて 2018年11月後半アップデートのまとめ 第二弾

みなさん、こんにちは。アマゾン ウェブ サービス ジャパン、プロダクトマーケティング エバンジェリストの亀田です。 サンフランシスコの空港に到着し、ラスベガス行きの飛行機を待っています。ラスベガスでは空港でre:Invent2018へのチェックインができるようになっています。会場でもできますので、ご無理なさらず皆さんのご都合の良い場所でチェックインをしてくださいね。 さて、第一弾に続き、2018年11月後半アップデートのまとめをお届けします。 Amazon SageMaker が Object2Vec と IP Insight の組み込みアルゴリズムをサポートするようになりました。 Object2Vecは、類似の単語、フレーズ、および文章があるアプリケーションで使用される教師付き学習アルゴリズムです。例えば、文書分類システムの構築、ユーザーの格付けが紐づく映画推薦システムなどで使われます。 IP Insightsは、リクエストのIPアドレスを分析して不審なオンライン動作を識別する新しい教師なし学習アルゴリズムです。アルゴリズムは統計モデリングとニューラルネットワークを使用して、例えば、銀行のアカウントへのユーザーのアクセス履歴からIPv4アドレスを識別し攻撃の検知等に用いられます。 AWS CodePipeline の実行速度が向上し、かつステージごとにより多くのパイプラインアクションをサポートしました。 パイプラインアクション間の遷移時間を短縮し、パイプラインの実行時間が短縮され、ビルドとテストの結果がすぐに得られ、機能をより迅速に反復することができるようになりました。すべてのアクションタイプに対してステージあたりのアクションのデフォルト制限が最大20から50になりました。 AWS CloudTrail が AWS Organizations をサポートしました。 組織全体でAWS CloudTrailを1つのアカウントから作成、管理、展開することができるよになり、組織内の各メンバーアカウントに自動的に適用される統一イベントロギング戦略を定義できるようになりました。 Amazon EMR が Jupyter Notebook をベースとしたマネージド分析環境である、EMRノートブックをリリースしました。 EMRノートブックはSpark用に事前設定されており、Sparkのマジックカーネルをサポートしているため、PySpark、Spark SQL、Spark R、Scalaなどの言語で書かれたEMRクラスタ上でSparkジョブを対話的に実行することができます。これらのライブラリをインポートしてデータを操作し、豊富なグラフィカルなプロットで計算結果を視覚化することを可能にするCondaのオープンソースライブラリがノートブックに付属しています。さらに、各ノートブックにはSparkの監視機能が組み込まれており、ジョブの進行状況を監視し、ノートブックから直接コードをデバッグすることができます。 Amazon Connect が コンタクトフローの設定に、Loop (ループ)ブロックをサポートしました。 ループブロックを使用すると、コンタクトフローのセグメントを繰り返すことができ、例えば、クレジットカード、口座番号、社会保障番号などの難しい入力を、顧客が簡単に入力できるようになります。また、悪天候のために会社が閉鎖されていることを知らせる際など、指定した回数だけ電話をかける処理ができるようになります。 Amazon Transcribe が リアルタイムの文字書き起こし(トランスクリプション)に対応しました。 ライブ・オーディオ・ストリームからテキスト・トランスクリプトをリアルタイムで受信できる機能が加わり、リアルタイムトランスクリプションが可能となりました。 AWS Lambda が Python 3.7 […]

Read More

re:Invent 2018に向けて 2018年11月後半アップデートのまとめ 第一弾

みなさん、こんにちは。アマゾン ウェブ サービス ジャパン、プロダクトマーケティング エバンジェリストの亀田です。 いよいよ明後日からre:Invent2018が米国ラスベガスで開催されます。毎年re:Inventの開催に先立ち多くの機能リリースが行われます。今年は例年以上のボリュームで多くの機能リリースが11月後半に発表されました。量が多くまとめるのが大変というお声をいただき、以下にその内容を纏めたいと思います。 Cloud Frontが10周年を迎え6つのエッジロケーションが新たにオープンしました。 シカゴ、ニューアーク、アシュバーン、ミュンヘン、東京、リオデジャネイロ。世界65都市、29カ国、150拠点となりました。 CloudFrontがオリジンのフェイルオーバー機能をサポートしました。 プライマリオリジンが利用できないことをCloudFrontが検出した場合に、セカンダリオリジンからコンテンツが提供されるようにプライマリとセカンダリの2つのディストリビューションを設定できるようになり、サービスの継続性が向上します。 CloudFrontがWebSocketをサポートしました。 デフォルトで有効となり、設定変更は不要です。そして追加料金も発生しません。 Amazon Neptune がHTTPSの暗号化通信に対応しました。 Transport Layer Security(TLS)1.2プロトコルを介してNeptuneのGremlinサーバーとSPARQL 1.1プロトコルRESTエンドポイントに接続できるようになりました。SSL用証明書は自動で設定され管理の必要はありません。 Amazon SageMakerがAmazon CloudWatchと連携しトレーニングジョブの監視、視覚化に対応しました。 ClouldWatchコンソールでメトリックを視覚化し、SageMaker APIとCloudWatch APIの両方を使用してメトリックを照会することができます。組み込みアルゴリズムとカスタムアルゴリズムの両方でサポートされました。 Amazon SageMaker が Apache Airflowに対応しました。 Apache Airflowは、クラウドやオンプレミスに導入できるワークフローをプログラムで作成、スケジュール、および監視するためのオープンソースのプラットフォームであり、モデルトレーニング、ハイパーパラメータチューニング、モデル展開、バッチ変換などの管理でご利用いただけます。 Amazon SageMakerがTensorflow 及び Chainer のサポートで機能拡張されました。 TensorFlowおよびChainerスクリプトの実行が容易になり、高性能アルゴリズムのライブラリ、自動モデルチューニング、ワンクリック展開、マネージドホスティングによる管理および分散トレーニングなどでご利用いただけます。 Amazon CloudWatch が Automatic Dashboard という機能をリリースしました。 自動ダッシュボードには、AWSサービス推奨のベストプラクティスがあらかじめ組み込まれており、リソースを認識したままで動的に更新され、重要なパフォーマンスメトリックの最新の状態が反映されます。すべてのAWSリソースの正常性とパフォーマンスの集計ビューを取得できるようになり、モニタリングを迅速に開始し、メトリックとアラームのアカウントとリソースベースのビューを調べ、ドリルダウンしてパフォーマンスの問題の根本原因を探ることができます。 AWS Batch が EC2 AMD インスタンスをサポートしました。 AMDベースのEC2インスタンスである R5a 及び […]

Read More

新しい AWS Resource Access Manager – クロスアカウントでのリソース共有

以前に説明したように、顧客はさまざまな理由で複数の AWS アカウントを使用しています。一部の顧客は、複数のアカウントを使用して管理および課金を切り分けています。爆発半径を設定して、間違いの影響をコントロールしている顧客もいます。 こうした分離はすべての顧客にとって実際にポジティブなものですが、特定のタイプの共有が有用で有益であることも判明しています。たとえば、多くの顧客は、管理のオーバーヘッドや運用コストを削減するために、リソースを一元的に作成してアカウント間で共有したいと考えています。 AWS Resource Access Manager 新しいAWS Resource Access Manager (RAM) は、AWS アカウント間でのリソース共有を容易にします。AWS 組織内でリソースを簡単に共有でき、コンソール、CLI、一連の API から使用できます。Route 53 Resolver ルールのサポートを開始 (昨日、Shaunの素晴らしい記事で発表) し、近いうちにさらに多くの種類のリソースを追加します。 リソースを共有するには、単にリソース共有を作成し、名前を付け、リソースを 1 つ以上追加し、他の AWS アカウントへのアクセス権を付与するだけです。それぞれのリソース共有はショッピングカートに似ており、異なる種類のリソースを保持できます。自分が所有しているリソースはすべて共有できますが、共有されているリソースを再共有することはできません。リソースは、組織、組織単位 (OU)、AWS アカウントで共有することができます。また、組織外のアカウントを特定のリソース共有に追加できるかどうかをコントロールすることもできます。 組織のマスターアカウントの共有を、RAM コンソールの [Settings] ページで有効にする必要があります。 その後、組織内の別のアカウントとリソースを共有すると、リソースはどちらの側でもさらなるアクションなしで利用可能になります (RAM は、アカウントが組織に追加されたときに行われたハンドシェイクを利用します)。組織外のアカウントでリソースを共有すると、そのアカウントでリソースを利用できるようにするために承認する必要がある招待が送信されます。 リソースがアカウント (消費アカウントと呼ぶ) と共有されると、共有リソースは消費アカウントが所有するリソースと共に適切なコンソールページに表示されます。同様に、Describe/List をコールすると、共有リソースと消費アカウントが所有するリソースの両方を返します。 リソース共有にタグを付け、IAM ポリシーでタグを参照してタグベースの権限システムを作成することができます。リソース共有から、いつでもアカウントやリソースを追加したり削除したりすることができます。 AWS Resource Access Manager の使用 RAM コンソールを開き、[Create a resource share] をクリックして開始します。 共有の名前 […]

Read More

Amazon Rekognition が、顔の検出、分析、認識機能の更新を発表

本日、当社は顔の検出、分析、認識機能の更新を発表いたします。これらの更新により、画像からより多くの顔を検出し、より正確な顔のマッチングを実行し、画像内の顔から年齢、性別、感情の属性を取得する能力が向上します。Amazon Rekognition の顧客は、本日より、追加コストなしでこれらの各機能拡張を使用できます。機械学習の経験は必要ありません。 「顔検出」は、「この画像には顔がありますか?」という質問に答えようとします。 現実世界の画像では、さまざまな側面が、高い精度で顔を検出するシステムの能力に影響を与える可能性があります。そうした側面としては、頭部の動きおよび/またはカメラの動きによるポーズの変化、前景または背景の物体 (前景にいる他の人の帽子、髪、手で覆われた顔など)によるオクルージョン、照明の変化 (低いコントラストや影など)、顔が白っぽくなる明るい照明、ノイズが多かったり不鮮明である顔につながる低品質と解像度、カメラやレンズ自体の歪みなどがあります。こうした問題は、未検出 (顔が検出されなかった) または誤検出 (画像領域に顔がないのに顔として検出される) として現れます。たとえば、ソーシャルメディアのさまざまなポーズでは、カメラのフィルター、照明、オクルージョン (「フォトボム」など) が一般的です。金融サービスの顧客の場合、多要素認証および不正防止ワークフローの一部としての顧客 ID の検証で、高解像度の自撮り (顔画像) を、写真 ID 文書 (パスポートや運転免許証など) のより低解像度で、小さく、しばしばぼやけた顔画像と照合させることが必要になります 。また、多くの顧客は、カメラが明るい光に向いている画像から低コントラストの顔を検出して認識しなければならなりません。 最新の更新により、Amazon Rekognition は前に説明した最も困難な条件にある画像で、以前は見逃されていた顔の 40% を検出できるようになりました。同時に、誤検出の割合は 50% 削減されています。つまり、ソーシャルメディアアプリなどの顧客は、高い確度で一貫して信頼できる検出 (未検出と誤検出が少ない) が可能になり、自動化されたプロフィール写真レビューなどのユースケースでより良い顧客経験を提供できます。さらに、顔認識は、大規模な顔のコレクションを検索する場合に、以前のモデルと比較して 30% より正確な「最良の」一致 (最も類似した顔) を返します。これにより、不正防止などのアプリケーションでより良い検索結果を得ることができます。顔照合では、さまざまな照明、ポーズ、外観でより一貫性のある類似性スコアを取得できるようになり、ID 照合などのアプリケーションでより高い信頼性のしきい値を使用して誤った一致を回避し、人間による確認を減らすことができます。いつものように、市民の自由や顧客の感情が関係するユースケースで照合の正確さが重要な場合、ベストプラクティス、より高い信頼水準 (少なくとも99%) を使用し、必ず人間による確認を含めることをお勧めします。 それでは、いくつかの画像を見て、Amazon Rekognition が制約のない環境でキャプチャされた難しい画像のさまざまな側面をどのように処理するかを確認しましょう。 ポーズのバリエーション この問題は、急なカメラアングル (顔の上または下から撮影されたショットなど)、顔を横から見たショット、被写体が遠ざかっている場合に発生します。この問題は、ソーシャルメディアの写真 (例えば、被写体が遠くを見ているときなど)、自撮り、ファッションの写真撮影でよく見られます。顔検出アルゴリズムは、多くの場合、顔の半分以下しか見えないか、顔が通常ではない確度で傾いている (逆さまになるなど) 場合に、顔を検出することが困難です。 画像 1: 横から見た顔 画像 2: 様々な角度でカメラを見下ろす顔 画像 3: […]

Read More