Artificial Intelligence

Category: Artificial Intelligence

Skai uses Amazon Bedrock Agents to significantly improve customer insights by revolutionized data access and analysis

Skai (formerly Kenshoo) is an AI-driven omnichannel advertising and analytics platform designed for brands and agencies to plan, launch, optimize, and measure paid media across search, social, retail media marketplaces and other “walled-garden” channels from a single interface. In this post, we share how Skai used Amazon Bedrock Agents to improve data access and analysis and improve customer insights.

The power of AI in driving personalized product discovery at Snoonu

In this post, we share how Snoonu, a leading ecommerce platform in the Middle East, transformed their product discovery experience using AI-powered personalization. In this post, we share how Snoonu, a leading ecommerce platform in the Middle East, transformed their product discovery experience using AI-powered personalization.

Accelerating HPC and AI research in universities with Amazon SageMaker HyperPod

In this post, we demonstrate how a research university implemented SageMaker HyperPod to accelerate AI research by using dynamic SLURM partitions, fine-grained GPU resource management, budget-aware compute cost tracking, and multi-login node load balancing—all integrated seamlessly into the SageMaker HyperPod environment.

Exploring the Real-Time Race Track with Amazon Nova

This post explores the Real-Time Race Track (RTRT), an interactive experience built using Amazon Nova in Amazon Bedrock, that lets fans design, customize, and share their own racing circuits. We highlight how generative AI capabilities come together to deliver strategic racing insights such as pit timing and tire choices, and interactive features like an AI voice assistant and a retro-style racing poster.

Build character consistent storyboards using Amazon Nova in Amazon Bedrock – Part 2

In this post, we take an animated short film, Picchu, produced by FuzzyPixel from Amazon Web Services (AWS), prepare training data by extracting key character frames, and fine-tune a character-consistent model for the main character Mayu and her mother, so we can quickly generate storyboard concepts for new sequels like the following images.

Build character consistent storyboards using Amazon Nova in Amazon Bedrock – Part 1

The art of storyboarding stands as the cornerstone of modern content creation, weaving its essential role through filmmaking, animation, advertising, and UX design. Though traditionally, creators have relied on hand-drawn sequential illustrations to map their narratives, today’s AI foundation models (FMs) are transforming this landscape. FMs like Amazon Nova Canvas and Amazon Nova Reel offer […]

Proofpoint Amazon Q Implementation

Unlocking the future of professional services: How Proofpoint uses Amazon Q Business

Proofpoint has redefined its professional services by integrating Amazon Q Business, a fully managed, generative AI powered assistant that you can configure to answer questions, provide summaries, generate content, and complete tasks based on your enterprise data. In this post, we explore how Amazon Q Business transformed Proofpoint’s professional services, detailing its deployment, functionality, and future roadmap.

Train and deploy models on Amazon SageMaker HyperPod using the new HyperPod CLI and SDK

In this post, we demonstrate how to use the new Amazon SageMaker HyperPod CLI and SDK to streamline the process of training and deploying large AI models through practical examples of distributed training using Fully Sharded Data Parallel (FSDP) and model deployment for inference. The tools provide simplified workflows through straightforward commands for common tasks, while offering flexible development options through the SDK for more complex requirements, along with comprehensive observability features and production-ready deployment capabilities.

Hugging Face Mapping

Build a serverless Amazon Bedrock batch job orchestration workflow using AWS Step Functions

In this post, we introduce a flexible and scalable solution that simplifies the batch inference workflow. This solution provides a highly scalable approach to managing your FM batch inference needs, such as generating embeddings for millions of documents or running custom evaluation or completion tasks with large datasets.