AWS Big Data Blog

Category: Database

Enable Multi-AZ deployments for your Amazon Redshift data warehouse

November 2023: This post was reviewed and updated with the general availability of Multi-AZ deployments for provisioned RA3 clusters. Originally published on December 9th, 2022. Amazon Redshift is a fully managed, petabyte scale cloud data warehouse that enables you to analyze large datasets using standard SQL. Data warehouse workloads are increasingly being used with mission-critical […]

Migrate Microsoft Azure Synapse Analytics to Amazon Redshift using AWS SCT

In this post, we show how to migrate a data warehouse from Microsoft Azure Synapse to Redshift Serverless using AWS Schema Conversion Tool (AWS SCT) and AWS SCT data extraction agents. AWS SCT makes heterogeneous database migrations predictable by automatically converting the source database code and storage objects to a format compatible with the target database.

Accelerate your data warehouse migration to Amazon Redshift – Part 7

In this post, we describe at a high-level how CDC tasks work in AWS SCT. Then we deep dive into an example of how to configure, start, and manage a CDC migration task. We look briefly at performance and how you can tune a CDC migration, and then conclude with some information about how you can get started on your own migration.

Automate legacy ETL conversion to AWS Glue using Cognizant Data and Intelligence Toolkit (CDIT) – ETL Conversion Tool

In this post, we describe how Cognizant’s Data & Intelligence Toolkit (CDIT)- ETL Conversion Tool can help you automatically convert legacy ETL code to AWS Glue quickly and effectively. We also describe the main steps involved, the supported features, and their benefits.

Automate the archive and purge data process for Amazon RDS for PostgreSQL using pg_partman, Amazon S3, and AWS Glue

The post Archive and Purge Data for Amazon RDS for PostgreSQL and Amazon Aurora with PostgreSQL Compatibility using pg_partman and Amazon S3 proposes data archival as a critical part of data management and shows how to efficiently use PostgreSQL’s native range partition to partition current (hot) data with pg_partman and archive historical (cold) data in […]

Create an Apache Hudi-based near-real-time transactional data lake using AWS DMS, Amazon Kinesis, AWS Glue streaming ETL, and data visualization using Amazon QuickSight

We recently announced support for streaming extract, transform, and load (ETL) jobs in AWS Glue version 4.0, a new version of AWS Glue that accelerates data integration workloads in AWS. AWS Glue streaming ETL jobs continuously consume data from streaming sources, clean and transform the data in-flight, and make it available for analysis in seconds. AWS also offers a broad selection of services to support your needs. A database replication service such as AWS Database Migration Service (AWS DMS) can replicate the data from your source systems to Amazon Simple Storage Service (Amazon S3), which commonly hosts the storage layer of the data lake. This post demonstrates how to apply CDC changes from Amazon Relational Database Service (Amazon RDS) or other relational databases to an S3 data lake, with flexibility to denormalize, transform, and enrich the data in near-real time.

Migrate your existing SQL-based ETL workload to an AWS serverless ETL infrastructure using AWS Glue

Data has become an integral part of most companies, and the complexity of data processing is increasing rapidly with the exponential growth in the amount and variety of data. Data engineering teams are faced with the following challenges: Manipulating data to make it consumable by business users Building and improving extract, transform, and load (ETL) […]

Five actionable steps to GDPR compliance (Right to be forgotten) with Amazon Redshift

The GDPR (General Data Protection Regulation) right to be forgotten, also known as the right to erasure, gives individuals the right to request the deletion of their personally identifiable information (PII) data held by organizations. This means that individuals can ask companies to erase their personal data from their systems and any third parties with […]

Near-real-time analytics using Amazon Redshift streaming ingestion with Amazon Kinesis Data Streams and Amazon DynamoDB

Amazon Redshift is a fully managed, scalable cloud data warehouse that accelerates your time to insights with fast, easy, and secure analytics at scale. Tens of thousands of customers rely on Amazon Redshift to analyze exabytes of data and run complex analytical queries, making it the widely used cloud data warehouse. You can run and […]

Getting started guide for near-real time operational analytics using Amazon Aurora zero-ETL integration with Amazon Redshift

November 2023: This post was reviewed and updated to include the latest enhancements in Aurora MySQL zero-ETL integration with Amazon Redshift on general availability (GA). Amazon Aurora zero-ETL integration with Amazon Redshift was announced at AWS re:Invent 2022 and is now generally available (GA) for Aurora MySQL 3.05.0 (compatible with MySQL 8.0.32) and higher version […]